Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels Bioprod ; 17(1): 34, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409122

RESUMO

BACKGROUND: Chitin, the main form of aminated polysaccharide in nature, is a biocompatible, polycationic, and antimicrobial biopolymer used extensively in industrial processes. Despite the abundance of chitin, applications thereof are hampered by difficulties in feedstock harvesting and limited structural versatility. To address these problems, we proposed a two-step cascade employing carbohydrate oxidoreductases and amine transaminases for plant polysaccharide aminations via one-pot reactions. Using a galactose oxidase from Fusarium graminearum for oxidation, this study compared the performance of CvATA (from Chromobacterium violaceum) and SpATA (from Silicibacter pomeroyi) on a range of oxidized carbohydrates with various structures and sizes. Using a rational enzyme engineering approach, four point mutations were introduced on the SpATA surface, and their effects on enzyme activity were evaluated. RESULTS: Herein, a quantitative colorimetric assay was developed to enable simple and accurate time-course measurement of the yield of transamination reactions. With higher operational stability, SpATA produced higher product yields in 36 h reactions despite its lower initial activity. Successful amination of oxidized galactomannan by SpATA was confirmed using a deuterium labeling method; higher aminated carbohydrate yields achieved with SpATA compared to CvATA were verified using HPLC and XPS. By balancing the oxidase and transaminase loadings, improved operating conditions were identified where the side product formation was largely suppressed without negatively impacting the product yield. SpATA mutants with multiple alanine substitutions besides E407A showed improved product yield. The E407A mutation reduced SpATA activity substantially, supporting its predicted role in maintaining the dimeric enzyme structure. CONCLUSIONS: Using oxidase-amine transaminase cascades, the study demonstrated a fully enzymatic route to polysaccharide amination. Although the activity of SpATA may be further improved via enzyme engineering, the low operational stability of characterized amine transaminases, as a result of low retention of PMP cofactors, was identified as a key factor limiting the yield of the designed cascade. To increase the process feasibility, future efforts to engineer improved SpATA variants should focus on improving the cofactor affinity, and thus the operational stability of the enzyme.

2.
Bioresour Technol ; 393: 130084, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000639

RESUMO

Laccase-like multicopper oxidases are recognized for their potential to alter the reactivity of lignins for application in value-added products. Typically, model compounds are employed to discover such enzymes; however, they do not represent the complexity of industrial lignin substrates. In this work, a screening pipeline was developed to test enzymes simultaneously on model compounds and industrial lignins. A total of 12 lignin-active fungal multicopper oxidases were discovered, including 9 enzymes active under alkaline conditions (pH 11.0). Principal component analysis revealed the poor ability of model compounds to predict enzyme performance on industrial lignins. Additionally, sequence similarity analyses grouped these enzymes with Auxiliary Activity-1 sub-families with few previously characterized members, underscoring their taxonomic novelty. Correlation between the lignin-activity of these enzymes and their taxonomic origin, however, was not observed. These are critical insights to bridge the gap between enzyme discovery and application for industrial lignin valorization.


Assuntos
Lacase , Lignina , Humanos , Lacase/metabolismo , Lignina/química , Oxirredução
3.
ACS Appl Mater Interfaces ; 15(5): 6326-6337, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36696478

RESUMO

Fouling at liquid-solid interfaces is a pernicious problem for a wide range of applications, including those that are implemented by digital microfluidics (DMF). There are several strategies that have been used to combat surface fouling in DMF, the most common being inclusion of amphiphilic surfactant additives in the droplets to be manipulated. Initial studies relied on Pluronic additives, and more recently, Tetronic additives have been used, which has allowed manipulation of complex samples like serum and whole blood. Here, we report our evaluation of 19 different Pluronic and Tetronic additives, with attempts to determine (1) the difference in antifouling performance between the two families, (2) the structural similarities that predict exceptional antifouling performance, and (3) the mechanism of the antifouling behavior. Our analysis shows that both Pluronic and Tetronic additives with modest molar mass, poly(propylene oxide) (PPO) ≥50 units, poly(ethylene oxide) (PEO) mass percentage ≤50%, and hydrophilic-lipophilic balance (HLB) ca. 13-15 allow for exceptional antifouling performance in DMF. The most promising candidates, P104, P105, and T904, were able to support continuous movement of droplets of serum for more than 2 h, a result (for devices operating in air) previously thought to be out of reach for this technique. Additional results generated using device longevity assays, intrinsic fluorescence measurements, dynamic light scattering, asymmetric flow field flow fractionation, supercritical angle fluorescence microscopy, atomic force microscopy, and quartz crystal microbalance measurements suggest that the best-performing surfactants are more likely to operate by forming a protective layer at the liquid-solid interface than by complexation with proteins. We propose that these results and their implications are an important step forward for the growing community of users of this technique, which may provide guidance in selecting surfactants for manipulating biological matrices for a wide range of applications.


Assuntos
Incrustação Biológica , Poloxâmero , Humanos , Poloxâmero/química , Tensoativos , Microfluídica , Incrustação Biológica/prevenção & controle , Polietilenoglicóis/química
4.
Microbiol Resour Announc ; 11(9): e0058622, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35969048

RESUMO

The brown rot fungus Fomitopsis pinicola efficiently depolymerizes wood cellulose via the combined activities of oxidative and hydrolytic enzymes. Mass spectrometric analyses of culture filtrates identified specific proteins, many of which were differentially regulated in response to substrate composition.

5.
Acta Biomater ; 147: 209-220, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35643199

RESUMO

Common periodontal disease treatment procedures often fail to restore the structural integrity of the junctional epithelium (JE), the epithelial attachment of the gum to the tooth, leaving the tooth-gum interface prone to bacterial colonization. To address this issue, we introduced a novel bio-inspired protein complex comprised of a proline-rich enamel protein, SCPPPQ1, and laminin 332 (LAM332) to enhance the JE attachment. Using quartz crystal microbalance with dissipation monitoring (QCM-D), we showed that SCPPPQ1 and LAM332 interacted and assembled into a protein complex with high-affinity adsorption of 5.9e-8 [M] for hydroxyapatite (HA), the main component of the mineralized tooth surfaces. We then designed a unique shear device to study the adhesion strength of the oral epithelial cells to HA. The SCPPPQ1/LAM332 complex resulted in a twofold enhancement in adhesion strength of the cells to HA compared to LAM332 (from 31 dyn/cm2 to 63 dyn/cm2). In addition, using a modified wound-healing assay, we showed that gingival epithelial cells demonstrated a significantly high migration rate of 2.7 ± 0.24 µm/min over SCPPPQ1/LAM332-coated surfaces. Our collective data show that this protein complex has the potential to be further developed in designing a bioadhesive to enhance the JE attachment and protect the underlying connective tissue from bacterial invasion. However, its efficacy for wound healing requires further testing in vivo. STATEMENT OF SIGNIFICANCE: This work is the first functional study towards understanding the combined role of the enamel protein SCPPPQ1 and laminin 332 (LAM332) in the epithelial attachment of the gum, the junctional epithelium (JE), to the tooth hydroxyapatite surfaces. Such studies are essential for developing therapeutic approaches to restore the integrity of the JE in the destructive form of gum infection. We have developed a model system that provided the first evidence of the strong interaction between SCPPPQ1 and LAM332 on hydroxyapatite surfaces that favored protein adsorption and subsequently oral epithelial cell attachment and migration. Our collective data strongly suggested using the SCPPPQ1/LAM332 complex to accelerate the reestablishment of the JE after surgical gum removal to facilitate gum regeneration.


Assuntos
Inserção Epitelial , Células Epiteliais , Membrana Basal/metabolismo , Inserção Epitelial/metabolismo , Gengiva , Hidroxiapatitas , Regeneração , Cicatrização
6.
Appl Microbiol Biotechnol ; 106(8): 2969-2979, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35449361

RESUMO

Softwood kraft lignin is a major bioresource relevant to the production of sustainable bio-based products. Continued challenges to lignin valorization, however, include poor solubility in organic solvents and in aqueous solutions at neutral pH. Herein, an alkaline tolerant laccase was used to graft acrylate functionalities onto softwood kraft lignin, which is expected to enhance the reactivity of lignin with isocyanate when producing bio-based polyurethanes. Proton nuclear magnetic resonance, Fourier-transform infrared spectroscopy, and high-performance liquid chromatography were used to confirm successful grafting of the acrylate monomer onto lignin and verify the importance of including tert-butyl hydroperoxide as an initiator in the grafting reaction. Laccase-mediated grafting of softwood kraft lignin under alkaline conditions produced lignin products with approximately 30% higher hydroxyl value and higher reactivity toward isocyanate. The reported enzymatic and aqueous process presents an opportunity for the sustainable valorization of softwood kraft lignin. KEY POINTS: • Softwood kraft lignin displayed high phenolic hydroxyl content, polydispersity index and average molecular weight • Grafting hydroxyethyl acrylate (HEA) monomer onto kraft lignin by laccase was successful at 60 °C and alkaline conditions • Lignin-HEA grafted copolymer showed an increase in total OH value and an increase in average molecular weight.


Assuntos
Lacase , Lignina , Acrilatos , Isocianatos , Lacase/química , Lignina/química , Polímeros , Água/química
7.
Curr Opin Biotechnol ; 73: 51-60, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34311175

RESUMO

Xylan is one of the most abundant, natural polysaccharides, and much recent interest focuses on upgrading heteroxylan to make use of its unique structures and chemistries. Significant progress has been made in the discovery and application of novel enzymes for debranching and modifying heteroxylans. Debranching enzymes include acetylxylan esterases, α-l-arabinofuranosidases and α-d-glucuronidases that release side groups from the xylan backbone to recover both biochemicals and less substituted xylans for polymer applications in food packaging or drug delivery systems. Besides esterases and hydrolases, many oxidoreductases including carbohydrate oxidases, lytic polysaccharide monooxygenases, laccases and peroxidases have been also applied to alter different types of xylans for improved physical and chemical properties. This review will highlight the recent discovery and application of enzymes for upgrading xylans for use as added-value chemicals and in functional polymers.


Assuntos
Polímeros , Xilanos , Esterases/química , Polissacarídeos
8.
Front Microbiol ; 12: 723524, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733245

RESUMO

The relative ability of the small laccase (sLac) and dye-decoloring peroxidase (DyP2) from Amycolatopsis sp. 75iv2 to transform a variety of lignins was investigated using time-of-flight secondary ion mass spectrometry (ToF-SIMS). The enzymes modified organosolv hardwood lignin to different extents even in the absence of an added mediator. More particularly, sLac decreased the lignin modification metric S (S-lignin)/Ar (total aromatics) by 58% over 16h, while DyP2 lowered this ratio by 31% in the absence of exogenous H2O2. When used on their own, both sLac and DyP2 also modified native lignin present in aspen wood powder, albeit to lesser extents than in the organosolv lignin. The addition of ABTS for sLac and Mn2+ as well as H2O2 for DyP2 led to increased lignin modification in aspen wood powder as reflected by a decrease in the G/Ar metric by up to a further 13%. This highlights the importance of exogenous mediators for transforming lignin within its native matrix. Furthermore, the addition of ABTS reduced the selectivity of sLac for S-lignin over G-lignin, indicating that the mediator also altered the product profiles. Finally, when sLac was included in reactions containing DyP2, in part to generate H2O2 in situ, the relative abundance of lignin products differed from individual enzymatic treatments. Overall, these results identify possible routes to tuning lignin modification or delignification through choice of enzyme and mediator. Moreover, the current study expands the application of ToF-SIMS to evaluating enzyme action on technical lignins, which can accelerate the discovery and engineering of industrially relevant enzymes for lignin valorization.

9.
Appl Environ Microbiol ; 87(16): e0032921, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34313495

RESUMO

Wood-decaying fungi tend to have characteristic substrate ranges that partly define their ecological niche. Fomitopsis pinicola is a brown rot species of Polyporales that is reported on 82 species of softwoods and 42 species of hardwoods. We analyzed gene expression levels of F. pinicola from submerged cultures with ground wood powder (sampled at 5 days) or solid wood wafers (sampled at 10 and 30 days), using aspen, pine, and spruce substrates (aspen was used only in submerged cultures). Fomitopsis pinicola expressed similar sets of wood-degrading enzymes typical of brown rot fungi across all culture conditions and time points. Nevertheless, differential gene expression was observed across all pairwise comparisons of substrates and time points. Genes exhibiting differential expression encode diverse enzymes with known or potential function in brown rot decay, including laccase, benzoquinone reductase, aryl alcohol oxidase, cytochrome P450s, and various glycoside hydrolases. Comparing transcriptomes from submerged cultures and wood wafers, we found that culture conditions had a greater impact on global expression profiles than substrate wood species. These findings highlight the need for standardization of culture conditions in studies of gene expression in wood-decaying fungi. IMPORTANCE All species of wood-decaying fungi occur on a characteristic range of substrates (host plants), which may be broad or narrow. Understanding the mechanisms that allow fungi to grow on particular substrates is important for both fungal ecology and applied uses of different feedstocks in industrial processes. We grew the wood-decaying polypore Fomitopsis pinicola on three different wood species­aspen, pine, and spruce­under various culture conditions. We found that F. pinicola is able to modify gene expression (transcription levels) across different substrate species and culture conditions. Many of the genes involved encode enzymes with known or predicted functions in wood decay. This study provides clues to how wood-decaying fungi may adjust their arsenal of decay enzymes to accommodate different host substrates.

10.
Nat Commun ; 12(1): 2132, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837197

RESUMO

Oxidative plant cell-wall processing enzymes are of great importance in biology and biotechnology. Yet, our insight into the functional interplay amongst such oxidative enzymes remains limited. Here, a phylogenetic analysis of the auxiliary activity 7 family (AA7), currently harbouring oligosaccharide flavo-oxidases, reveals a striking abundance of AA7-genes in phytopathogenic fungi and Oomycetes. Expression of five fungal enzymes, including three from unexplored clades, expands the AA7-substrate range and unveils a cellooligosaccharide dehydrogenase activity, previously unknown within AA7. Sequence and structural analyses identify unique signatures distinguishing the strict dehydrogenase clade from canonical AA7 oxidases. The discovered dehydrogenase directly is able to transfer electrons to an AA9 lytic polysaccharide monooxygenase (LPMO) and fuel cellulose degradation by LPMOs without exogenous reductants. The expansion of redox-profiles and substrate range highlights the functional diversity within AA7 and sets the stage for harnessing AA7 dehydrogenases to fine-tune LPMO activity in biotechnological conversion of plant feedstocks.


Assuntos
Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Oomicetos/enzimologia , Oxirredutases/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Cristalografia por Raios X , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Flavoproteínas Transferidoras de Elétrons/metabolismo , Ensaios Enzimáticos , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/ultraestrutura , Microbiologia Industrial/métodos , Espectroscopia de Ressonância Magnética , Oomicetos/genética , Oxirredução , Oxirredutases/genética , Oxirredutases/isolamento & purificação , Oxirredutases/ultraestrutura , Filogenia , Análise de Sequência de DNA , Especificidade por Substrato
11.
Antibiotics (Basel) ; 10(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450907

RESUMO

Natural products and their derivatives have been commonly used in our daily life, as they play important roles in boosting immune systems and fighting diseases [...].

12.
N Biotechnol ; 62: 49-56, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33486119

RESUMO

The coordinated action of carbohydrate-active enzymes has mainly been evaluated for the purpose of complete saccharification of plant biomass (lignocellulose) to sugars. By contrast, the coordinated action of accessory hemicellulases on xylan debranching and recovery is less well characterized. Here, the activity of two family GH115 α-glucuronidases (SdeAgu115A from Saccharophagus degradans, and AxyAgu115A from Amphibacillus xylanus) on spruce arabinoglucuronoxylan (AGX) was evaluated in combination with an α-arabinofuranosidase from families GH51 (AniAbf51A, aka E-AFASE from Aspergillus niger) and GH62 (SthAbf62A from Streptomyces thermoviolaceus). The α-arabinofuranosidases boosted (methyl)-glucuronic acid release by SdeAgu115A by approximately 50 % and 30 %, respectively. The impact of the α-arabinofuranosidases on AxyAgu115A activity was comparatively low, motivating its structural characterization. The crystal structure of AxyAgu115A revealed increased length and flexibility of the active site loop compared to SdeAgu115A. This structural difference could explain the ability of AxyAgu115A to accommodate more highly substituted arabinoglucuronoxylan, and inform enzyme selections for improved AGX recovery and use.


Assuntos
Bacillaceae/enzimologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Modelos Moleculares
13.
FEBS Lett ; 595(3): 351-359, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33277689

RESUMO

Glucuronoxylans represent a significant fraction of woody biomass, and its decomposition is complicated by the presence of lignin-carbohydrate complexes (LCCs). Herein, LCCs from birchwood were used to investigate the potential coordinated action of a glucuronoyl esterase (TtCE15A) and two α-glucuronidases (SdeAgu115A and AxyAgu115A). When supplementing α-glucuronidase with equimolar quantities of TtCE15A, total MeGlcpA released after 72 h by SdeAgu115A and AxyAgu115A increased from 52% to 67%, and 61% to 95%, respectively. Based on the combined TtCE15A and AxyAgu115A activities, ~ 34% of MeGlcpA in the extracted birchwood glucuronoxylan was occupied as LCCs. Notably, insoluble LCC fractions reduced soluble α-glucuronidase concentrations by up to 70%, whereas reduction in soluble TtCE15A was less than 30%, indicating different tendencies to adsorb onto the LCC substrate.


Assuntos
Proteínas de Bactérias/metabolismo , Esterases/metabolismo , Glicosídeo Hidrolases/metabolismo , Lignina/metabolismo , Polissacarídeos/metabolismo , Xilanos/metabolismo , Bacillaceae/química , Bacillaceae/enzimologia , Proteínas de Bactérias/genética , Betula/química , Biomassa , Ensaios Enzimáticos , Esterases/genética , Gammaproteobacteria/química , Gammaproteobacteria/enzimologia , Expressão Gênica , Ácido Glucurônico/metabolismo , Glicosídeo Hidrolases/genética , Hidrólise , Cinética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Madeira/química
14.
Biotechnol Biofuels ; 13: 51, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190116

RESUMO

BACKGROUND: Dicarboxylic acids offer several applications in detergent builder and biopolymer fields. One of these acids, 4-O-methyl d-glucaric acid, could potentially be produced from glucuronoxylans, which are a comparatively underused fraction of wood and agricultural biorefineries. RESULTS: Accordingly, an enzymatic pathway was developed that combines AxyAgu115A, a GH115 α-glucuronidase from Amphibacillus xylanus, and GOOX, an AA7 gluco-oligosaccharide oxidase from Sarocladium strictum, to produce this bio-based chemical from glucuronoxylan. AxyAgu115A was able to release almost all 4-O-methyl d-glucuronic acid from glucuronoxylan while a GOOX variant, GOOX-Y300A, could convert 4-O-methyl d-glucuronic acid to the corresponding glucaric acid at a yield of 62%. Both enzymes worked effectively at alkaline conditions that increase xylan solubility. Given the sensitivity of AxyAgu115A to hydrogen peroxide and optimal performance of GOOX-Y300A at substrate concentrations above 20 mM, the two-step enzyme pathway was demonstrated as a sequential, one-pot reaction. Additionally, the resulting xylan was easily recovered from the one-pot reaction, and it was enzymatically hydrolysable. CONCLUSIONS: The pathway in this study requires only two enzymes while avoiding a supplementation of costly cofactors. This cell-free approach provides a new strategy to make use of the underutilized hemicellulose stream from wood and agricultural biorefineries.

15.
Biomacromolecules ; 19(2): 521-530, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29338223

RESUMO

A chemo-enzymatic pathway was developed to transform 4-O-methylglucuronic acid (MeGlcpA) containing xylo-oligosaccharides from beechwood into clickable monomers capable of polymerizing at room temperature and in aqueous conditions to form unique polytriazoles. While the gluco-oligosaccharide oxidase (GOOX) from Sarocladium strictum was used to oxidize C6-propargylated oligosaccharides, the acid-amine coupling reagents 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide (EDAC) and 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) were employed and compared for their ability to append click functionalities to carboxylic acid groups of enzyme-treated oligosaccharides. While DMT-MM was a superior coupling reagent for this application, a triazine side product was observed during C-1 amidation. Resulting bifunctional xylo-oligosaccharide monomers were polymerized using a Cu(I) catalyst, forming a soft gel which was characterized by 1H NMR, confirming the triazole product.


Assuntos
Oxirredutases do Álcool/química , Ascomicetos/enzimologia , Química Click/métodos , Proteínas Fúngicas/química , Madeira/química , Xilanos/química
16.
Enzyme Microb Technol ; 104: 22-28, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28648176

RESUMO

Glucuronic acid and/or 4-O-methyl-glucuronic acid (GlcA/MeGlcA) are substituents of the main xylans present in hardwoods, conifers, and many cereal grains. α-Glucuronidases from glycoside hydrolase family GH115 can target GlcA/MeGlcA from both internally and terminally substituted regions of xylans. The current study describes the first GH115 α-glucuronidase, AxyAgu115A, from the alkaliphilic organism Amphilbacillus xylanus. AxyAgu115A was active in a wide pH range, and demonstrated better performance in alkaline condition compared to other characterized GH115 α-glucuronidases, which generally show optimal activity in acidic conditions. Specifically, its relative activity between pH 5.0 and pH 8.5 was above 80%, and was 35% of maximum at pH 10.5; although the enzyme lost 30% and 80% relative residual activity after 24-h pre-incubation at pH 9 and pH 10, respectively. AxyAgu115A was also similarly active towards glucuronoxylan as well as comparatively complex xylans such as spruce arabinoglucurunoxylan. Accommodation of complex xylans was supported by docking analyses that predicted accessibility of AxyAgu115A to branched xylo-oligosaccharides. MeGlcA release by AxyAgu115A from each xylan sample was increased by up to 30% by performing the reaction at pH 11.0 rather than pH 4.0, revealing applied benefits of AxyAgu115A for xylan recovery and processing.


Assuntos
Bacillaceae/enzimologia , Proteínas de Bactérias/metabolismo , Glicosídeo Hidrolases/metabolismo , Xilanos/metabolismo , Bacillaceae/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Genes Bacterianos , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Cinética , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato , Ácidos Urônicos/metabolismo
17.
Biomacromolecules ; 18(2): 610-616, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28125213

RESUMO

Most existing methods for screening the activity of lytic polysaccharide mono-oxygenases (LPMOs) on polysaccharides are based on the detection of soluble oxidized sugars. This approach might underestimate the total performance of LPMOs since oxidation events that do not lead to oligosaccharide release are not detected. Using PcLPMO9D as a model enzyme, a microplate-based method has been developed to detect C1-oxidizing LPMO activity by covalently linking a water-soluble fluorophore to oxidized positions within the cellulose fiber. This fluorescence method was validated using X-ray photoelectron spectroscopy and then combined with high-performance anion-exchange chromatography to track total PcLPMO9D activity.


Assuntos
Fluorescência , Microtecnologia/métodos , Oxigenases de Função Mista/metabolismo , Phanerochaete/enzimologia , Polissacarídeos/química , Celulose/química , Quitina/química , Oxirredução , Phanerochaete/crescimento & desenvolvimento , Espectroscopia Fotoeletrônica , Especificidade por Substrato
18.
Sci Rep ; 6: 37356, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27869125

RESUMO

Glucose oxidase (GO) activity is generally restricted to glucose and is susceptible to inactivation by H2O2. By comparison, the Y300A variant of gluco-oligosaccharide oxidase (GOOX) from Sarocladium strictum showed broader substrate range and higher H2O2 stability. Specifically, Y300A exhibited up to 40 times higher activity on all tested sugars except glucose, compared to GO. Moreover, fusion of the Y300A variant to a family 22 carbohydrate binding module from Clostridium thermocellum (CtCBM22A) nearly doubled its catalytic efficiency on glucose, while retaining significant activity on oligosaccharides. In the presence of 200 mM of H2O2, the recombinant CtCBM22A_Y300A retained 80% of activity on glucose and 100% of activity on cellobiose, the preferred substrate for this enzyme. By contrast, a commercial glucose oxidase reported to contain ≤0.1 units catalase/ mg protein, retained 60% activity on glucose under the same conditions. GOOX variants appear to undergo a different mechanism of inactivation, as a loss of histidine instead of methionine was observed after H2O2 incubation. The addition of CtCBM22A also promoted functional binding of the fusion enzyme to xylan, facilitating its simultaneous purification and immobilization using edible oat spelt xylan, which might benefit the usage of this enzyme preparation in food and baking applications.


Assuntos
Oxirredutases do Álcool/química , Proteínas Fúngicas/química , Glucose Oxidase/química , Peróxido de Hidrogênio/química , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/isolamento & purificação , Substituição de Aminoácidos , Ascomicetos/enzimologia , Domínio Catalítico , Estabilidade Enzimática , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Glucose Oxidase/genética , Glucose Oxidase/isolamento & purificação , Cinética , Modelos Moleculares , Oligossacarídeos/química , Oxirredução , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Especificidade por Substrato
19.
J Biol Chem ; 291(27): 14120-14133, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27129264

RESUMO

Glucuronic acid (GlcAp) and/or methylglucuronic acid (MeGlcAp) decorate the major forms of xylan in hardwood and coniferous softwoods as well as many cereal grains. Accordingly, the complete utilization of glucuronoxylans or conversion to sugar precursors requires the action of main chain xylanases as well as α-glucuronidases that release the α- (1→2)-linked (Me)GlcAp side groups. Herein, a family GH115 enzymefrom the marine bacterium Saccharophagus degradans 2-40(T), SdeAgu115A, demonstrated activity toward glucuronoxylan and oligomers thereof with preference toward MeGlcAp linked to internal xylopyranosyl residues. Unique biochemical characteristics of NaCl activation were also observed. The crystal structure of SdeAgu115A revealed a five-domain architecture, with an additional insertion C(+) domain that had significant impact on the domain arrangement of SdeAgu115A monomer and its dimerization. The participation of domain C(+) in substrate binding was supported by reduced substrate inhibition upon introducing W773A, W689A, and F696A substitutions within this domain. In addition to Asp-335, the catalytic essentiality of Glu-216 was revealed by site-specific mutagenesis. A primary sequence analysis suggested that the SdeAgu115A architecture is shared by more than half of GH115 members, thus defining a distinct archetype for GH115 enzymes.


Assuntos
Gammaproteobacteria/enzimologia , Glicosídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Glicosídeo Hidrolases/química , Biologia Marinha , Modelos Moleculares , Conformação Proteica , Homologia de Sequência de Aminoácidos
20.
Biochim Biophys Acta ; 1860(2): 354-62, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26518347

RESUMO

BACKGROUND: Galactose oxidase (GaO) selectively oxidizes the primary hydroxyl of galactose to a carbonyl, facilitating targeted chemical derivatization of galactose-containing polysaccharides, leading to renewable polymers with tailored physical and chemical properties. Here we investigate the impact of a family 29 glucomannan binding module on the activity and binding of GaO towards various polysaccharides. Specifically, CBM29-1-2 from Piromyces equi was separately linked to the N- and C-termini of GaO. RESULTS: Both GaO-CBM29 and CBM29-GaO were successfully expressed in Pichia pastoris, and demonstrated enhanced binding to galactomannan, galactoglucomannan and galactoxyloglucan. The position of the CBM29 fusion affected the enzyme function. Particularly, C-terminal fusion led to greatest increases in galactomannan binding and catalytic efficiency, where relative to wild-type GaO, kcat/Km values increased by 7.5 and 19.8 times on guar galactomannan and locust bean galactomannan, respectively. The fusion of CBM29 also induced oligomerization of GaO-CBM29. MAJOR CONCLUSIONS: Similar to impacts of cellulose-binding modules associated with cellulolytic enzymes, increased substrate binding impeded the action of GaO fusions on more concentrated preparations of galactomannan, galactoglucomannan and galactoxyloglucan; this was especially true for GaO-CBM29. Given the N-terminal positioning of the native galactose-binding CBM32 in GaO, the varying impacts of N-terminal versus C-terminal fusion of CBM29-1-2 may reflect competing action of neighboring CBMs. GENERAL SIGNIFICANCE: This study thoroughly examines and discusses the effects of CBM fusion to non-lignocellulytic enzymes on soluble polysaccharides. Herein kinetics of GaO on galactose containing polysaccharides is presented for the first time.


Assuntos
Fusarium/enzimologia , Galactose Oxidase/metabolismo , Mananas/química , Sequência de Aminoácidos , Estabilidade Enzimática , Galactose/química , Galactose Oxidase/química , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...